SHPORA.net :: PDA

Login:
регистрация

Main
FAQ

гуманитарные науки
естественные науки
математические науки
технические науки
Search:
Title: | Body:

5 Строение Земли. Внешние оболочки. Внешние геосферы.


Строение Земли

В общем виде, как установлено современными геофизическими исследованиями на основании, в частности, оценок скоростей распространения сейсмических волн, изучения плотности земного вещества, массы Земли, результатов космических экспериментов по определению распределения воздушного и водного пространств и другими данными, Земля сложена как бы несколькими концентрическими оболочками: внешними—атмосфера (газовая оболочка), гидросфера (водная оболочка), биосфера (область распространения живого вещества, по В.И. Вернадскому) и внутренними, которые называют собственно геосферами (ядро, мантия и литосфера).

Непосредственному наблюдению доступны атмосфера, гидросфера, биосфера и самая верхняя часть земной коры. С помощью буровых скважин человеку удается изучать глубины в основном до 8 км. Проходка сверхглубоких скважин, которая осуществляется в научных целях в нашей стране, США и Канаде (в России на Кольской сверхглубокой скважине достигнута глубина более 12 км, что позволило отобрать образцы горных пород для непосредственного прямого изучения). Основной целью сверхглубокого бурения является достижение глубинных слоев земной коры — границ «гранитного» и «базальтового» слоев или верхних границ мантии. Строение более глубоких недр Земли изучается геофизическими методами, из которых наибольшее значение имеют сейсмические и гравиметрические. Изучение вешества, поднятого с границ мантии, должно внести ясность в проблему строения Земли. Особый интерес представляет собой мантия, так как земная кора со всеми полезными ископаемыми образовалась в конечном счете из ее вещества.

Атмосфера по распределенной в ней температуре снизу вверх подразделяется на тропосферу, стратосферу, мезосферу, термосферу и экзосферу. Тропосфера составляет около 80 % всей массы атмосферы и достигает высоты 16—18 км в экваториальной части и 8—10 км в полярных областях. Стратосфера простирается до высоты 55 км и имеет у верхней границы слой озона. Далее идут до высоты 80 км мезосфера, до 800—1000 км термосфера и выше располагается экзосфера (сфера рассеивания), составляющая не более 0,5 % массы земной атмосферы (см. рис. 1). В состав атмосферы входит азот (75,51 %), кислород (23,3 %), аргон (1,28 %), углекислота (0,04 %) и другие газы и почти весь водяной пар. Содержание озона (03) равно 3,1 х 10IS г, а кислорода (03) 1,192 х х1021 г. С удалением от поверхности Земли температура атмосферы резко понижается и на высоте 10—12 км она уже составляет около —50 "С. В тропосфере происходит образование облаков и сосредотачиваются тепловые движения воздуха. У поверхности Земли наиболее высокая температура была отмечена в Ливии (+ 58 "С в тени), на территории бывшего СССР в районе г. Термез (+ 50 °С в тени).

Земное ядро состоит из внешнего (жидкого) и внутреннего (твердого) ядра. Радиус внутреннего ядра (так называемый слой G) примерно равен 1200—1250 км, переходный слой (F) между внутренним и внешним ядром имеет мощность около 300—400 км, а радиус внешнего ядра равен 3450—3500 км (соответственно глубина 2870—2920 км). Плотность вещества во внешнем ядре с глубиной возрастает с 9,5 до 12,3 г/см3. В центральной части внутреннего ядра плотность вещества достигает почти 14 г/см3. Все это показывает, что масса земного ядра составляет до 32 % всей массы Земли, в то время как объем всего примерно 16 % от объема Земли. Современные специалисты считают, что земное ядро почти на 90 % представляет собой железо с примесью кислорода, серы, углерода и водорода, причем внутреннее ядро имеет железо-никелевый состав, что полностью отвечает составу ряда метеоритов.

Мантия Земли представляет собой силикатную оболочку между ядром и подошвой литосферы. Масса мантии составляет 67,8 % от обшей массы Земли (О.Г. Сорохтин, 1994). Геофизическими исследованиями установлено, что мантия, в свою очередь, может быть подразделена на верхнюю (слой В) (рис. 1 ) (до глубины 400 км), переходный слой Голицына (слой С на глубине от 400 до 1000 км) и нижнюю мантию (слой Д с подошвой на глубине примерно 2900 км). Под океанами в верхней мантии выделяется слой, в котором мантийное вещество находится в частично расплавленном состоянии. Весьма важным элементом в строении мантии является зона, подстилающая подошву литосферы. Физически она представляет собой поверхность перехода сверху вниз от охлажденных жестких пород к частично расплавленному мантийному веществу, находящемуся в пластическом состоянии и составляющему астеносферу.

По современным представлениям мантия имеет ультраосновной состав (пиролита, как смеси 75 % перидотита и 25 % толеитового базальта или лериолита), в связи с чем ее часто называют перидотитовой или -каменной» оболочкой. Содержание радиоактивных элементов в мантии весьма низки. Так в среднем 10"к % U; 10"7 % Th, 10~*% ^К. Мантия в настоящее время оценивается как источник сейсмических и вулканических явлении, горообразовательных процессов, а также зона реализации магматизма.

Земная кора представляет собой верхний слой Земли, который имеет нижнюю границу или подошву по сейсмическим данным по слою Мохоровичича, где отмечено скачкообразное увеличение скоростей распространения упругих (сейсмических) волн до 8,2 км/с.

Для инженера-геолога земная кора является основным объектом исследований, именно на ее поверхности и в ее недрах возводятся инженерные сооружения, т. е. осуществляется строительная деятельность В частности, для решения многих практических задач важным является выяснение процессов формирования поверхности земной коры, истории этого формирования.

В целом поверхность земной коры формируется пол воздействием направленных противоположно друг другу процессов:

эндогенных, включающих в себя тектонические и магматические процессы, которые ведут к вертикальным перемещениям в земной коре — поднятиям и опусканиям, т. е. создают «неровности» рельефа;

экзогенных, вызывающих денудацию (выполаживание, выравнивание) рельефа за счет выветривания, эрозии различных видов и гравитационных сил;

«седиментационных (осадконакопление), как «выполняющих» осадками все созданные при эндогенезе неровности.

В настоящее время выделяются два типа земной коры: «базальтовая)' океаническая и «гранитная» континентальная, is

Океаническая кора достаточно проста по составу и представляет некое трехслойное формирование. Верхний слой, мощность которого колеблется от 0,5 км в срединной части океана до L5 км у 1 чубоководных дельт рек и материковых склонов, где накапливается практически ьесьтерригеннын материал, в то время как в других зонах пксэна осадочный матерпач представлен карбонатными осадками и (юскарбонатными красными глубоководными глинами. Второй слой сложен подушечными лавами базальтов океанического типа, подстилаемый долеритовыми дайками того же состава; общая мощность этого слоя составляет 1,5—2 км. Третий слой в верхней части разряда представлен слоем габбро, который вблизи от срединных океанических хребтов подстилается серпентинитами; общая мощность третьего слоя лежит в пределах от 4,7 до 5 км.

Средняя плотность океанической коры (без осадков) равна 2,9 г/см1, ее масса —6,4 х 1024 г, объем осадков 323 млн. kmj. Океаническая кора образуется в рифтовых эонах среди нно-о конических хребтов за счет происходящего под ними выделения базальтовых расплавов из асте-посферного слоя Земли и излияния толеитовых базальтов на океанское дно. Установлено, что ежегодно из растеносферы поступает 12 км3 базальтов. Все эти грандиозные гекгоно-магматические процессы сопровождаются повышенной сейсмичностью и не имеют себе равных на континентах.

Континентальная кора резко отличается от океанической по мощности, строению и составу. Ее мощность меняется от 20—25 км под островными дугами и участками с переходным типом коры до Я0 км под молодыми складчатыми поясами Земли, например, под Андами или Альп и йско-Гималайским поясом. Мощность континентальной коры под древними платформами составляет в среднем 40 км. Континентальная кора сложена тремя слоями, верхний из которых осадочный, а два нижних представлены кристаллическими породами. Осадочный слой сложен глинистыми осадками и карбонатами мелководных морских бассейнов и имеет весьма различную мощность от 0 на древних щитах до 15 км в краевых прогибах платформ. Под осадочным слоем залегают докембрийские «гранитные» породы, зачастую преобразованные процессами регионального метаморфизма. Под этим слоем залегает базальтовый. Отличием океанической коры от континентальной является наличие в ней гранитного слоя. Далее океаническая и континентальная кора подстилается породами верхней мантии.

Земная кора имеет алюмосиликатный состав, представленный, главным образом, легкоплавкими соединениями. Из химических элементов преобладающими являются кислород (43,13%), кремний (26 %) и алюминий (7,45 %) (табл. 2) в форме силикатов и оксидов.

Химический состав земной коры. %, следующий: кислород—46,8; кремний—27,3; алюминий—8,7; железо — 5,1;^кальций—3,6; натрий—2,6; калий—2,6; магний—2.L; другие

Как показывают последние данные, состав океанической коры настолько постоянен, что его можно считать одной из глобальных констант, так же как состав атмосферного воздуха или средняя соленость морской воды, Это является свидетельством единства механизма ее образования.

Важным обстоятельством, отличающим земную кору от других внутренних геосфер, является наличие в ней повышенного содержания долгоживущих радиоактивных изотопов урана 232U, тория 237Th, калия К, причем их наибольшая концентрация отмечена для «гранитного» слоя континентальной коры, в океанической же коре радиоактивных элементов ничтожно мало.

Литосфера —это каменная оболочка Земли, объединяющая земную кору, подкоровую часть верхней мантии и подстилаемая астеносферой. Характерным признаком литосферы является то, что в нее входят породы в твердом кристаллическом состоянии и она обладает жесткостью и прочностью. Вниз по разрезу от поверхности Земли наблюдается рост температуры. Расположенная под литосферой пластичная оболочка мантии—астеносфера, в которой при высоких температурах вещество частично расплавлено, и вследствие этого в отличие от литосферы астеносфера не обладает прочностью и может пластично деформироваться, вплоть до способности течь даже под действием очень малых избыточных давлений. В свете современных представлений согласно теории тектоники литосферных плит установлено, что литосферные плиты, которые слагают внешнюю оболочку Земли, образуются за счет остывания и полной кристаллизации частично расплавленного вещества астеносферы, подобно тому, как это происходит, например, на реке при замерзании воды и образовании льда в морозный день. Следует отметить, что слагающий верхнюю мантию лерцолит обладает сложным составом, в связи с чем вещество астеносферы, находясь в твердом состоянии, механически ослаблено настолько, что способно проявлять ползучесть. Это показывает, что астеносфера в масштабах геологического времени ведет себя как вязкая жидкость. Таким образом, литосфера способна к движению относительно нижней мантии за счет ослабленности астеносферы. Важным фактом, подтверждающим возможность перемещения литосферных плит, является то, что астеносфера выражена глобально, хотя ее глубина, мощность и физические свойства варьируют в широких пределах. Мощность литосферы меняется от нескольких километров под рифтовыми долинами срединных океанических хребтов до 100 км под периферией океанов, апод древними щитами мощность литосферы достигает 300—350 км.